Optical frequency comb metrology from infrared to extreme ultraviolet wavelengths
نویسنده
چکیده
We report on frequency comb generation at 1.5 μm by injection of a CW laser in a hybridly1 mode-locked InAs/InP two-section quantum-dot laser (HMLQDL). The generated comb has > 60 modes spaced by ∼ 4.5 GHz and a -20 dBc width of> 100 GHz (23modes) at> 30 dB signal to background ratio. Comb generation was observed with the CW laser (red) detuned more than 20 nm outside the HMLQDL spectrum, spanning a large part of the gain spectrum of the quantum dot material. It is shown that the generated comb is fully coherent with the injected CW laser and RF frequency used to drive the hybrid mode-locking. This method of comb generation is of interest for the creation of small and robust frequency combs for use in optical frequency metrology, high-frequency (> 100 GHz) RF generation and telecommunication applications.
منابع مشابه
Extreme ultraviolet frequency comb metrology.
The remarkable precision of frequency-comb (FC) lasers is transferred to the extreme ultraviolet (XUV, wavelengths shorter than 100 nm), a frequency region previously not accessible to these devices. A frequency comb at XUV wavelengths near 51 nm is generated by amplification and coherent up-conversion of a pair of pulses originating from a near-infrared femtosecond FC laser. The phase coherenc...
متن کاملOn-chip frequency comb generation at visible wavelengths via simultaneous second- and third-order optical nonlinearities.
Microresonator-based frequency comb generation at or near visible wavelengths would enable applications in precise optical clocks, frequency metrology, and biomedical imaging. Comb generation in the visible has been limited by strong material dispersion and loss at short wavelengths, and only very narrowband comb generation has reached below 800 nm. We use the second-order optical nonlinearity ...
متن کاملDeep-ultraviolet quantum interference metrology with ultrashort laser pulses.
Precision spectroscopy at ultraviolet and shorter wavelengths has been hindered by the poor access of narrow-band lasers to that spectral region. We demonstrate high-accuracy quantum interference metrology on atomic transitions with the use of an amplified train of phase-controlled pulses from a femtosecond frequency comb laser. The peak power of these pulses allows for efficient harmonic upcon...
متن کاملXUV frequency-comb metrology on the ground state of helium
The operation of a frequency comb at extreme ultraviolet (xuv) wavelengths based on pairwise amplification and nonlinear upconversion to the 15th harmonic of pulses from a frequency-comb laser in the near-infrared range is reported. It is experimentally demonstrated that the resulting spectrum at 51 nm is fully phase coherent and can be applied to precision metrology. The pulses are used in a s...
متن کاملOptical Frequency Combs: From Frequency Metrology to Optical Phase Control
The merging of continuous wave laser-based precision optical-frequency metrology with mode-locked ultrafast lasers has led to precision control of the visible and near-infrared frequency spectrum produced by mode-locked lasers. Such a phase-controlled mode-locked laser forms the foundation of a “femtosecond optical-frequency comb generator” with a regular comb of sharp lines with well-defined f...
متن کامل